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SUMMARY

This paper presents a parametric finite-difference scheme concerning the numerical solution of the one-
dimensional Boussinesq-type set of equations, as they were introduced by Peregrine (J. Fluid Mech.
1967; 27(4)) in the case of waves relatively long with small amplitudes in water of varying depth. The
proposed method, which can be considered as a generalization of the Crank-Nickolson method, aims to
investigate alternative approaches in order to improve the accuracy of analogous methods known from
bibliography. The resulting linear finite-difference scheme, which is analysed for stability using the Fourier
method, has been applied successfully to a problem used by Beji and Battjes (Coastal Eng. 1994; 23:
1–16), giving numerical results which are in good agreement with the corresponding results given by
MIKE 21 BW (User Guide. In: MIKE 21, Wave Modelling, User Guide. 2002; 271–392) developed by
DHI Software. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

During the last three decades a lot of effort has been put by the scientific community on numerical
modelling of short waves in shallow water. Most of the phase-resolving models dealing with this
research aspect and used in practical applications are based either on the mild-slope equation,
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originally derived by Berkhoff [1], which describes the motion of time harmonic water waves
of infinitesimal height (linear waves) on a gently sloping bathymetry with arbitrary water depth,
or based on the Boussinesq-type equations governing the propagation of arbitrary long-wave
disturbances of small to moderate amplitude over a slowly-varying bathymetry, the first such set
of which was derived by Peregrine [2]. In case the research is interested in the energy transfer
among the different components of shallow waves as those propagate from offshore inshore into
shallow water, then Boussinesq-type equations—which are weakly non-linear and dispersive—have
been found to model the non-linear effects of the wave-transformation process with satisfactory
accuracy. These equations are depth integrated, simplifying the full three-dimensional problem to
a two-dimensional one, and can be formulated either in the time-domain (most usual) or in the
frequency domain.

Most of the works dealing with numerical modelling in the time-domain employ finite difference
methods (FDM). Characteristic pioneer works on FDM concerning short-wave modelling in shallow
water were those of Abbott et al. [3] according to which the differential equations were discretized
by using a time-centred implicit scheme with variables defined on a space-staggered rectangular
grid, as well as the one of Abbott et al. [4], including developments of the aforementioned scheme.
Based on the same numerical method, Madsen et al. [5] presented a new form of equations in terms
of the depth-integrated velocities for two horizontal dimensions with improved linear shallow and
dispersion characteristics and Madsen and Sørensen [6] rederived the new Boussinesq equations
for slowly varying bathymetry. Beji and Battjes [7] used similar equations and scheme to model
relatively long, unidirectional waves propagating over a submerged obstacle. Wei and Kirby [8]
developed a high-order numerical FDM scheme to solve a set of highly non-linear Boussinesq-
type equations, while Beji and Nadaoka [9] used three-time-level finite-difference approximations
to model the corrected (energy conserving) equations of Madsen and Sørensen [6]. For general,
extended reviews on the Boussinesq-type modelling the reader can find resource in the works of
Madsen and Schäffer [10] and Kirby [11].

In this paper a parametric numerical scheme based on a generalization of the Crank-Nickolson
method is used to simulate weakly-non-linear wave propagation over variable bathymetry regions
in shallow water conditions. The organization of the paper is as follows: in Section 2, the physical
problem is set and its governing equations are stated. Next in Section 3, the numerical scheme
and its stability analysis are presented. Finally in Section 4, the numerical results arising from the
experiments using the proposed method are analysed and discussed.

2. GOVERNING EQUATIONS

Following Peregrine [2] the equations of motion describing relatively long, small amplitude waves
propagating in water of varying depth in 2 + 1 dimensions are given by

��

�t
+ ∇ · [(h + �)u] = 0 (1a)

u t + (u · ∇)u + g∇� = 1

2
h

�
�t

∇[∇ · (hu)] − 1

6
h2

�
�t

∇(∇ · u) (1b)

in the region �̃ ={(x, y); L0
x<x<L1

x , L0
y<y<L1

y} for t>0 where � = �(x, y, t) is the free surface
displacement as it is measured from still water level and u=u(x, y, t) = [u1, u2]T T denoting
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transpose, is the depth-averaged horizontal velocity vector both sufficient differentiable functions,
∇ =[�/�x, �/�y]T, h = h(x, y) is the still water depth and g the gravitational acceleration.

Systems (1a) and (1b) for the one-dimensional propagation, when �2h/�x2 = 0 (see
Reference [7]), h = h(x) and it is set for simplicity u1 ≡ u, reads to

��

�t
+ �[(h + �)u]

�x
= 0 (2a)

�u
�t

+ u
�u
�x

+ g
��

�x
= 1

3
h2

�3u
�x2�t

+ h
�h
�x

�2u
�x�t

(2b)

where it is assumed that x ∈ � with �=[L0<x<L1] and t>0. Madsen et al. [5] have given a
formulation for horizontal bottom by adding in Equation (2b) a third-order derivative term with
an adjustable proportional factor, which is known as the calibration factor b, as follows:

�u
�t

+ u
�u
�x

+ g
��

�x
= 1

3
h2

�3u
�x2�t

+ h
�h
�x

�2u
�x�t

+ bh2
(

�3u
�x2�t

+ g
�3�
�x3

)

Then systems (2a) and (2b) is written as

��

�t
+ �[(h + �)u]

�x
= 0 (3a)

�u
�t

+ u
�u
�x

+ g
��

�x
= b̃h2

�3u
�x2�t

+ h
�h
�x

�2u
�x�t

+ gbh2
�3�
�x3

(3b)

in which b̃ = b + 1
3 . Appropriate values for b could be found in References [6, 7], etc.

The initial conditions associated with systems (3a) and (3b) have been assumed to be of the
form

u(x, 0)= �(x, 0)= 0 (4)

3. THE NUMERICAL SCHEME

3.1. Grid and solution vectors

To obtain a numerical solution the region R = �× [t>0] with its boundary �R consisting of
the lines x = L0, L1 and t = 0 is covered with a rectangular mesh, G, of points with coordi-
nates (x, t) = (xm, tn) = (L0 + m�x, n�t) with m = 0, 1, . . . , N + 1 and n = 0, 1, . . . , in which
�x = (L1 − L0)/(N +1) represents the discretization into N +1 subintervals of the space variable
x , while �t represents the discretization of the time variable t . The solution for the unknown
functions � and u of an approximating finite-difference scheme at the same point will be denoted
by �nm and unm , respectively, while for the purpose of analysing stability, the numerical value

of actually obtained (subject, for instance, to computer round-off errors) will be denoted by �̃
n
m

and ũnm .
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Let the solution vectors be

fn = f(tn) = [�n1, �n2, . . . , �nN , �nN+1]T (5a)

un =u(tn) =[un1, un2, . . . , unN , unN+1]T (5b)

For the finite-difference scheme the following formulae are going to be used:

�u
�t

≈ u(x, t + �t) − u(x, t)

�t
= 1

�t
(un+1

m − unm) (6)

�u
�x

≈ u(x + �x, t) − u(x − �x, t)

2�x
= 1

2�x
(unm+1 − unm−1) (7a)

while, when m = 1 or m = N + 1:

�u
�x

≈ u(x + �x, t) − u(x, t)

�x
= 1

�x
(unm+1 − unm) (7b)

or

�u
�x

≈ u(x, t) − u(x − �x, t)

�x
= 1

�x
(unm − unm−1) (7c)

Also

�2u
�x2

≈ u(x + �x, t) − 2u(x, t) + u(x − �x, t)

�x2
= 1

�x2
(unm+1 − 2unm + unm−1) (8)

�2u
�x�t

≈ 1

2�x�t
[u(x + �x, t + �t) − u(x − �x, t + �t) − u(x + �x, t) + u(x − �x, t)]

= 1

2�x�t
(un+1

m+1 − un+1
m−1 − unm+1 + unm−1) (9)

�3u
�x3

≈ −u(x − 2�x, t) + 2u(x − �x, t) − 2u(x + �x, t) + u(x + 2�x, t)

2�x3

= 1

2�x3
(−unm−2 + 2unm−1 − 2unm+1 + unm+2) (10)

�3u
�x2�t

≈ 1

�x2�t
[u(x + �x, t + �t) − 2u(x, t + �t) + u(x − �x, t + �t)

− u(x + �x, t) + 2u(x, t) − u(x − �x, t)]

= 1

�x2�t
(un+1

m+1 − 2un+1
m + un+1

m−1 − unm+1 + 2unm − unm−1) (11)
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3.2. The proposed method

Using an analogous scheme as in Reference [12] the systems (3a) and (3b) is considered to be
satisfied at the point (m�x, (n + ϑ)�t); ϑ ∈ [0, 1] of the grid G. Due to this assumption all space
partial derivatives are substituted by their finite-difference approximations at the nth and (n+ 1)th
time-level. This method for �u/�x using Equation (7a) gives

(
�u
�x

)n+ϑ

m
= ϑ

(
�u
�x

)n+1

m
+ (1 − ϑ)

(
�u
�x

)n

m

= 1

2�x
[ϑ(un+1

m+1 − un+1
m−1) + (1 − ϑ)(unm+1 − unm−1)] (12)

while for �3u/�x3 using Equation (10)

(
�3u
�x3

)n+ϑ

m

= ϑ

(
�3u
�x3

)n+1

m

+ (1 − ϑ)

(
�3u
�x3

)n

m

= 1

2�x3
[ϑ(−un+1

m−2 + 2un+1
m−1

− 2un+1
m+1 + un+1

m+2) + (1 − ϑ)(−unm−2 + 2unm−1 − 2unm+1 + unm+2)] (13)

Equations (12) and (13), when ϑ = 1
2 , lead to the Crank-Nickolson scheme used by Beji and

Battjes [7].

3.2.1. The boundary conditions. The surface elevation is specified at the boundary point x = L0
(input) as

�(L0, t) = f (t), t>0 (14a)

where f (t) is an appropriate function producing harmonic waves of period T and height H ,
while at the same point the depth-averaged velocity using the continuity equation for a progressive
wave as

u(L0, t) = c̃0�(L0, t)

h0 + �(L0, t)
, t>0 (14b)

where c̃0 and h0 are the phase celerity and the water depth at x = L0, respectively. The phase
celerity is computed from the linear dispersion relation corresponding to Equations (3a) and (3b)
from the (dominant) incident wave period. Equations (14a) and (14b) using the notation of the
grid G are written as

�n0 = f (n�t) (15a)

and

un0 = c̃0�
n
0

h0 + �n0
(15b)
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At the outgoing boundary (output) x = L1 the values �(L1, t) and u(L1, t) are evaluated from the
radiation condition for both the surface displacement using the continuity equation and for the
velocity from the momentum one defined by

��(L1, t)

�t
+ c̃N+1

��(x, t)

�x

∣∣∣∣
x=L1

= 0, t>0 (16a)

�u(L1, t)

�t
+ c̃N+1

�u(x, t)

�x

∣∣∣∣
x=L1

= 0, t>0 (16b)

where c̃N+1 and hN+1 are the phase celerity and the water depth at x = L1. Equations (16a) and
(16b) using the proposed method (12) for both the time and the space partial derivatives give

ϑ

(
��

�t

)n+1

N+1
+ (1 − ϑ)

(
��

�t

)n+1

N
= − c̃N+1

[
ϑ

(
��

�x

)n+1

N+1
+ (1 − ϑ)

(
��

�x

)n

N+1

]

ϑ

(
�u
�t

)n+1

N+1
+ (1 − ϑ)

(
�u
�t

)n+1

N
= − c̃N+1

[
ϑ

(
�u
�x

)n+1

N+1
+ (1 − ϑ)

(
�u
�x

)n

N+1

]

or using Equation (6) for the time and Equation (7c) for the space partial derivatives and the
notation of the grid G:

ϑ(�n+1
N+1 − �nN+1) + (1 − ϑ)(�n+1

N − �nN )

= − r c̃N+1[ϑ (�n+1
N+1 − �n+1

N ) + (1 − ϑ)(�nN+1 − �nN )] (17a)

ϑ(un+1
N+1 − unN+1) + (1 − ϑ)(un+1

N − unN )

= − r c̃N+1[ϑ(un+1
N+1 − un+1

N ) + (1 − ϑ)(unN+1 − unN )] (17b)

in which r =�t/�x , otherwise

ϑ(1 + r c̃N+1)�
n+1
N+1 + [1 − ϑ(1 + r c̃N+1)]�n+1

N

=[ϑ − r c̃N+1(1 − ϑ)]�nN+1 + (1 − ϑ)(1 + r c̃N+1)�
n
N (18a)

ϑ(1 + r c̃N+1)u
n+1
N+1 + [1 − ϑ(1 + r c̃N+1)]un+1

N

=[ϑ − r c̃N+1(1 − ϑ)]unN+1 + (1 − ϑ)(1 + r c̃N+1)u
n
N (18b)

with ϑ ∈ (0, 1]. Especially, when ϑ = 0, the following approximations arising by Equations (16a)
and (16b) are going to be used:

�n+1
N+1 = �nN+1 − r c̃N+1(�

n
N+1 − �nN ) (19a)

un+1
N+1 = unN+1 − r c̃N+1(u

n
N+1 − unN ) (19b)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:129–147
DOI: 10.1002/fld



A PARAMETRIC FDM FOR SHALLOW SEA WAVES 135

Finally, after using linear interpolation the following approximations for the first out of the
boundary points of the grid G were used:

�(L0 − �x, t) ≈ 2�(L0, t) − �(L0 + �x, t), t>0

�(L1 + �x, t) ≈ 2�(L1, t) − �(L1 − �x, t), t>0

otherwise, using the notation of the grid G,

�n−1 = 2�n0 − �n1 (20a)

�nN+2 = 2�nN+1 − �nN (20b)

3.2.2. The finite-difference scheme. Let p= 1/�x2 and q = bg�t/4�x3. Then Equation (3a) using
Equations (6)–(7c) leads to the following two-time level explicit finite-difference scheme for the
evaluation of the unknown vector fn+1:

�n+1
m = �nm − r

2
[(hm+1 + �nm+1)u

n
m+1 − (hm−1 + �nm−1)u

n
m−1] (21a)

for m = 1, 2, . . . , N ,

�n+1
N+1 = 1

ϑ(1 + r c̃N+1)
{−[1 − ϑ(1 + r c̃N+1)]�n+1

N

+[ϑ − r c̃N+1(1 − ϑ)]�nN+1 + (1 − ϑ)(1 + r c̃N+1)�
n
N } when ϑ ∈ (0, 1] (21b)

using Equation (18a) or using Equation (19a)

�n+1
N+1 = �nN+1 − r c̃N+1(�

n
N+1 − �nN ) when ϑ = 0 (21c)

Equation (3b), subject to the boundary conditions specified in Section 3.2.1, forms the following
two-time level implicit finite-difference scheme for the unknown vector un+1:

[
r

2
ϑun+ϑ

1 − b̃h21 p − 1

4
ph1(h2 − h0)

]
un+1
2 + (1 + 2b̃h21 p)u

n+1
1

= −
[
−r

2
ϑun+ϑ

1 − b̃h21 p + 1

4
ph1(h2 − h0)

]
un+1
0

+
[
−r

2
(1 − ϑ)un+ϑ

1 − b̃h21 p − 1

4
ph1(h2 − h0)

]
un2

+ (1 + 2b̃h21 p)u
n
1 +

[
r

2
(1 − ϑ)un+ϑ

1 − b̃h21 p + 1

4
ph1(h2 − h0)

]
un0

+ 2qh21[ϑ(�n+1
3 + �n+1

1 − 2�n+1
0 ) + (1 − ϑ)(�n3 + �n1 − 2�n0)]

−
(
4qh21 + r

2
g
)

[ϑ(�n+1
2 − �n+1

0 ) + (1 − ϑ)(�n2 − �n0)] (22a)
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for m = 1,

[
r

2
ϑun+ϑ

m − b̃h2m p − 1

4
phm(hm+1 − hm−1)

]
un+1
m+1

+ (1 + 2b̃h2m p)un+1
m +

[
−r

2
ϑun+ϑ

m − b̃h2m p + 1

4
phm(hm+1 − hm−1)

]
un+1
m−1

=
[
−r

2
(1 − ϑ)un+ϑ

m − b̃h2m p − 1

4
phm(hm+1 − hm−1)

]
unm+1

+ (1 + 2b̃h2m p)unm +
[
r

2
(1 − ϑ)un+ϑ

m − b̃h2m p + 1

4
phm(hm+1 − hm−1)

]
unm−1

+ 2qh2m[ϑ(�n+1
m+2 − �n+1

m−2) + (1 − ϑ)(�nm+2 − �nm−2)]

− (4qh2m + r

2
g)[ϑ(�n+1

m+1 − �n+1
m−1) + (1 − ϑ)(�nm+1 − �nm−1)] (22b)

for m = 2, 3, . . . , N − 1,

[
r

2
ϑun+ϑ

N − b̃h2N p − 1

4
phN (hN+1 − hN−1)

]
un+1
N+1

+ (1 + 2b̃h2N p)un+1
N +

[
−r

2
ϑun+ϑ

N − b̃h2N p + 1

4
phN (hN+1 − hN−1)

]
un+1
N−1

=
[
−r

2
(1 − ϑ)un+ϑ

N − b̃h2N p − 1

4
hN p(hN+1 − hN−1)

]
unN+1

+ (1 + 2b̃h2N p)unN +
[
r

2
(1 − ϑ)un+ϑ

N − b̃h2N p + 1

4
phN (hN+1 − hN−1)

]
unN−1

+ 2qh2N [ϑ(2�n+1
N+1 − �n+1

N − �n+1
N−2)) + (1 − ϑ)(2�nN+1 − �nN − �nN−2)]

− (4qh2N + r

2
g)[ϑ(�n+1

N+1 − �n+1
N−1) + (1 − ϑ)(�nN+1 − �nN−1)] (22c)

for m = N ,

ϑ(1 + r c̃N+1)u
n+1
N+1 + [1 − ϑ(1 + r c̃N+1)]un+1

N

= [ϑ − r c̃N+1(1 − ϑ)]unN+1 + (1 − ϑ)(1 + r c̃N+1)u
n
N when ϑ ∈ (0, 1] (22d)
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A PARAMETRIC FDM FOR SHALLOW SEA WAVES 137

using Equation (18b) or from Equation (19b)

un+1
N+1 = unN+1 − r c̃N+1(u

n
N+1 − unN ) when ϑ = 0 (22e)

The term un+ϑ
m ; m = 1, 2, . . . , N , in Equations (22a)–(22c) is determined using Taylor’s series

expansion about (x, t) as follows:

u(x, t + ϑ�t) = u(x, t) + ϑ�t
�u(x, t)

�t
+ O(�t2) as �t → 0 (23)

In Equation (23) the term �u/�t can be evaluated explicitly by employing the momentum equation
for the shallow water approximation as follows:

�u
�t

+ u
�u
�x

+ g
��

�x
≈ 0 (24)

Then using the notation of the grid G and Equations (7a)–(7c), (23) and (24) give

un+ϑ
m = unm − r

2
ϑ[unm(unm+1 − unm−1) + g(�nm+1 − �nm−1)] (25)

for m = 1, 2, . . . , N .
Finally Equations (22a)–(22e) are written in a matrix–vector form as

Ãun+1 =F(un, fn+1, fn) + bd (26)

in which Ã is a tridiagonal matrix of order N + 1 given by

Ã=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 e1

c2 d2 e2

. . .

cN dN eN

cN+1 dN+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(27)

with entries defined in Equations (22a)–(22e) and

bd =
[
−
{
−r

2
ϑun+ϑ

1 − b̃h21 p + 1

4
ph1(h2 − h0)

}
un+1
0 , 0, . . . , 0

]T
(28)

the vector with the boundary conditions of order N + 1.
Then the values �n+1

m ; m = 1, 2, . . . , N , evaluated by Equations (21a)–(21c), are corrected
using the values of un+1 obtained from the solution of the system Equation (26) with an analogous
scheme to that used in Equation (12)

�n+1
m = �nm − r

2
{ϑ[(hm+1 + �n+1

m+1)u
n+1
m+1 − (hm−1 + �n+1

m−1)u
n+1
m−1]

+ (1 − ϑ)[(hm+1 + �nm+1)u
n
m+1 − (hm−1 + �nm−1)u

n
m−1]} (29)
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for m = 1, 2, . . . , N . The above procedure can be described as follows:

(i) P: predict the value fn+1 from Equations (21a)–(21c),
(ii) E: evaluate the value un+1 from Equation (27),
(iii) C: correct fn+1 using Equation (29),

repeat the above steps (ii)–(iii) to achieve the desired accuracy.

3.3. Stability analysis

The von Neumann method of analysing stability will be used. This method entails considering
a small error of the form

Zn
m = �nm − �̃

n
m = en��teim���x (30a)

Ẑ n
m = unm − ũnm = en��teim�u�x with i = √−1; � ∈ C, ��, �u ∈ � (30b)

and then finding the criteria under which the von Neumann necessary criterion for stability

|e�� t |�1 (31)

where e��t is the amplification factor, is satisfied.
Let

h0 be a constant typical value of hm; m = 0, 1, . . . , N + 1 (32a)

�̃0 = max
m=0,1,...,N+1

(hm + �nm) (32b)

u0 = max
m=0,1,...,N+1

unm (32c)

and

ũ0 = max
m=0,1,...,N+1

un+ϑ
m (32d)

Equation (21a) using the linearization (32c) is written as

�n+1
m − �nm + r

2
u0(hm+1 + �nm+1 − hnm−1 − �nm−1) = 0

which using (30a) and (32a) gives rise to the following scheme for examining stability:

Zn+1
m − Zn

m + r

2
u0(Z

n
m+1 − Zn

m−1) = 0 (33)

Equation (33) using expression (30a) after canceling both sides with en��t eim���x , leads to the
following stability equation

e��t + iru0 sin(���x) − 1= 0 (34)

Then condition (31) for Equation (34) using known properties of the modulus gives the following
condition:

|e��t |�1 + u0
�t

�x
(35)
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which is always satisfied, when

u0 = 0 (36)

If u0 = max u0m ; m = 1, 2, . . . , N + 1 condition (36) is in accordance with the initial condition
(4). Also condition (36) satisfies the CFL condition [13] for first-order hyperbolic equations (see
Reference [14]) according to which

u0
�t

�x
�1 (37)

Equation (21a) using linearization (32b) is written as

�n+1
m − �nm = − r

2
�̃0(u

n
m+1 − unm−1) (38)

Then Equation (22b) using linearizations (32a)–(32d) reads to

r

2
ϑũ0(u

n+1
m+1 − un+1

m−1) − b̃h20 p(u
n+1
m+1 − 2un+1

m + un+1
m−1) + un+1

m

= − r

2
(1 − ϑ)ũ0(u

n
m+1 − unm−1) − b̃h20 p(u

n
m+1 − 2unm + unm−1) + unm

+ 2qh20[ϑ(�n+1
m+2 − �nm+2) − ϑ(�n+1

m−2 − �nm−2) + (�nm+2 − �nm−2)]

− (4q h20 + r

2
g)[ϑ(�n+1

m+1 − �nm+1) − ϑ(�n+1
m−1 − �nm−1) + (�nm+1 − �nm−1)]

otherwise using Equation (38) as

r

2
ϑũ0(u

n+1
m+1 − un+1

m−1) − b̃h20 p(u
n+1
m+1 − 2un+1

m + un+1
m−1) + un+1

m

= − r

2
(1 − ϑ)ũ0(u

n
m+1 − unm−1) − b̃h20 p(u

n
m+1 − 2unm + unm−1) + unm

+ qrh20�̃0ϑ(−unm+3 + unm+1 + unm−1 − unm−3)

+ r

2
�̃0ϑ

(
4qh20 + r

2
g
)

(unm+2 − 2unm + unm−2)

+ 2qh20(�
n
m+2 − �nm−2) − (4qh20 + r

2
g)(�nm+1 − �nm−1) (39)

To approximate the last two terms on the right-hand side of Equation (39) the approximation (24)
by omitting the term u(�u/�x) was used. Then

�nm+1 − �nm−1 = − 2

g

�x

�t
(un+1

m − unm) (40a)
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and

�nm+2 − �nm−2 = − 4

g

�x

�t
(un+1

m − unm) (40b)

Equation (39) using Equations (40a), (40b) and (30b) finally gives

r

2
ϑũ0(Ẑ

n+1
m+1 − Ẑ n+1

m−1) − b̃h20 p(Ẑ
n+1
m+1 − 2Ẑ n+1

m + Ẑ n+1
m−1)

= − r

2
(1 − ϑ)ũ0(Ẑ

n
m+1 − Ẑ n

m−1) − b̃h20 p(Ẑ
n
m+1 − 2Ẑ n

m + Ẑ n
m−1)

+ qrh20�̃0ϑ(−Ẑ n
m+3 + Ẑ n

m+1 + Ẑ n
m−1 − Ẑ n

m−3)

+ r

2
�̃0ϑ

(
4qh20 + r

2
g
)

(Ẑ n
m+2 − 2Ẑ n

m + Ẑ n
m−2) (41)

which after canceling both sides by en��teim�u�x leads to the following stability equation:

[
irϑũ0 sin(�u�x) + 4b̃h20 p sin2

(
�u�x

2

)]
�

= − ir(1 − ϑ)ũ0 sin(�u�x) + 4b̃h20 p sin2
(

�u�x

2

)

+ 2qrh20�̃0ϑ[cos(�u�x) − cos(3�u�x)] − 2r �̃0ϑ
(
4qh20 + r

2
g
)
sin2(�u�x) (42)

where, again, � = e��t the amplification factor. Equation (42) is of the form Ă� = B̆ with Ă, B̆ ∈C,
where C is the set of the complex numbers and Ă �= 0. Then � = B̆/ Ă, so condition (31) will be
satisfied, when ∣∣∣∣∣ B̆Ă

∣∣∣∣∣�1 (43)

Ineq. (43), after applying known properties of the complex numbers, leads to

8gϑ�̃0 sin2
(

�u�x

2

)[
1 + 4bph20 sin2

(
�u�x

2

)]{
gr2ϑ�̃0

[
cos2

(
�u�x

2

)

+ bph20 sin2(�u�x)

]
− 2b̃ ph20

}
�(2ϑ − 1)ũ20 (44)

Let �= bph20, �= b̃ ph20. If ϑ>0.5, then Ineq. (44) gives the following restriction for r :

[
2�

gϑ�̃0(1 + �)

]1/2
<r�

{[
gϑ�̃0(1 + �)

]−1
[

(2ϑ − 1)ũ20
8gϑ�̃0(1 + 4�)

+ 2�

]}1/2

(45)
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If ϑ = 0.5, then

r�2

[
�

g�̃0(1 + �)

]1/2
(46)

and finally, when ϑ<0.5,

{
[gϑ�̃0(1 + �)]−1

[
(1 − 2ϑ)ũ20

8gϑ�̃0(1 + 4�)
+ 2�

]}1/2

�r<

[
2�

gϑ�̃0(1 + �)

]1/2
(47)

The most restrictive of Ineqs. (45)–(47) and Ineq. (37) are going to be used for the experiments.

4. NUMERICAL EXPERIMENTS

The method developed in Section 3.2 was tested on the problem introduced by Beji and
Battjes [7] using L0 = 0m, L1 = 24m, T = 2 s, H = 0.02m, h0 = 0.4m and the bathymetry shown
in Figure 1.

First, the method was applied for ϑ = 0.5 with �x = 1
20 m, �t = 1

150 s and the surface elevation
obtained for the interval [L0, L1]. Results were obtained for all stations. In each time step one
prediction-correction was performed.

To investigate the effect of the parameter ϑ at the numerical solution of systems (3a), (3b)
the interval [0, 1] was discretized into 20 subintervals each of width �ϑ = 0.05 and the method
was applied for t ∈ [0, 30] for each value ϑ. From the surface elevations only those which were
in agreement with the expected solution from the experimental data [7] were obtained. From the
runs it was found that this restriction was satisfied, when ϑ ∈ [0.4, 0.6]. Then, in order to establish
more precisely the behaviour of the method for the various values of ϑ, the interval [0.4, 0.6]
was discretized to subintervals, each of width �ϑ = 0.01 and the method was applied again for
t ∈ [0, 30] for each value ϑ. After examining the resulting surface elevation in each of the stations
1–7, when ϑ ∈ [0.4, 0.6], no spurious oscillations were observed (see also Figures 2 and 3).

In order to evaluate the results, the solution for the various values of ϑ was compared to the
solution obtained by MIKE 21 BW [15], developed by DHI Software. The set-up of the DHI model

Figure 1. The bathymetry used for the experiments. The stations (st) 1–7 are the
same to those used by Beji and Battjes [7].
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Figure 2. The curve shows the surface elevation when: (a) ϑ = 0.40; and (b) ϑ = 0.5.
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Figure 3. The curve shows the surface elevation when: (a) ϑ = 0.525; (b) and ϑ = 0.6.

is described as follows: a time step equal to T/200= 0.01 s and a spatial step equal to 1/20= 0.05m
were used corresponding with a maximum Courant number equal to 0.4. The duration of the
simulation was 5000 time steps or 50 s, where the first 500 time steps were considered as the
warm-up period of the model (the period where the forcing functions—boundary conditions—are
gradually built up to their prescribed value). The flux densities and the surface slopes, which were
obtained by a wave generator of first-order Stokes waves with the characteristics of the Beji–Battjes
set-up, were given to the model as source conditions, while a sponge layer of 100 points (5m)
was used 1.5m before the source to absorb the wave energy propagation out of the model domain
and 3m after the end of the obstacle to absorb incoming waves in the computational area.

MIKE 21 BW converges to a periodic solution after 20 s for the specific configuration at stations
5, 6 and 7. In Figures 4–7 we present the resulting surface elevation of our numerical method (thin
line) compared to the solution we get from MIKE (thick line) at each of the stations 2–7 for the
values of ϑ = 0.4, 0.45, 0.5, 0.525 and ϑ = 0.6. For ϑ = 0.5 the method coincides with the method
presented by Beji and Battjes [7].

The MIKE 21 BW solution is considered as a reference solution, so we calculated the maximum
absolute difference between our solution and the solution given by MIKE 21 BW for the various
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Figure 4. The curves show the surface elevation at t ∈ [25, 30] for stations 2–7 when ϑ = 0.40.
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Figure 5. The curves show the surface elevation at t ∈ [25, 30] for stations 2–7 when ϑ = 0.5.

values of ϑ in each of the stations 2–7 for the time period t ∈ [25, 30]. As the two implementations
have different stepsize the ‘error’ was measured at the common points of the discetization. The
values observed for ϑ = 0.4, 0.45, 0.5, 0.525 and ϑ = 0.6 are presented in Table I and Figure 8.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:129–147
DOI: 10.1002/fld



144 A. G. BRATSOS, I. TH. FAMELIS AND A. M. PROSPATHOPOULOS

26 28 30

comparison,st2 th=0.525

26 28 30

comparison,st3

26 28 30

comparison,st4

26 28 30

comparison,st5

26 28 30

comparison,st6

26 28 30

comparison,st7

−0.04

−0.02

0

0.02

0.04

−0.04

−0.02

0

0.02

0.04

−0.04

−0.02

0

0.02

0.04

−0.04

−0.02

0

0.02

0.04

−0.04

−0.02

0

0.02

0.04

−0.04

−0.02

0

0.02

0.04

Figure 6. The curves show the surface elevation at t ∈ [25, 30] for stations 2–7 when ϑ = 0.525.
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Figure 7. The curves show the surface elevation at t ∈ [25, 30] for stations 2–7 when ϑ = 0.6.

The sofar results led us to focus our choice for the best value of ϑ on the interval [0.475, 0.525].
So, another qualitative criterion for the evaluation of our method was added. For the various values
of ϑ the invariant of motion corresponding to the conservation of mass

I1 =
∫ +∞

−∞
�(x, t) dx (48)
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Table I. The absolute value of error compared to the MIKE solution in stations
2–7 for various ϑ.

ϑ ϑ= 0.4 ϑ= 0.45 ϑ= 0.5 ϑ= 0.525 ϑ= 0.55 ϑ= 0.6

Station 2 0.0020 0.0014 0.0013 0.0014 0.0015 0.0031
Station 3 0.0076 0.0048 0.0027 0.0023 0.0023 0.0050
Station 4 0.0071 0.0044 0.0037 0.0038 0.0043 0.0109
Station 5 0.0347 0.0317 0.0290 0.0279 0.0271 0.0291
Station 6 0.0075 0.0062 0.0049 0.0049 0.0059 0.0145
Station 7 0.0089 0.0076 0.0075 0.0076 0.0074 0.0180
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Figure 8. The absolute error for various values of ϑ in stations 2–7.

was estimated (see analogous invariant in Reference [16, p. 173]). This quantity is expected to be
zero. The improper integral was estimated in an interval of x for which the solution is expected
to conserve the mass. As the numerical solutions for different values of ϑ are not identical we
have chosen slightly different upper and lower bounds for the various values of ϑ. Then using the
composite trapezoidal rule integral (48) gives the results shown in Table II for the various values
of ϑ in three time instants in the interval t ∈ [25, 30]. The overall numerical tests led to the choice
of 0.525 as the most proper value for the parameter ϑ.

5. CONCLUSIONS

A parametric finite-difference scheme based on the idea of searching the best position between
the known time level t = n� and the unknown one t = (n + 1)� was presented in this paper for
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Table II. The absolute value of invariant for various ϑ
in three time instants.

ϑ t = 25 t = 27 t = 30

0.4 0.044 0.0398 0.4190
0.425 0.0562 0.0026 0.285
0.450 0.0604 0.0306 0.1741
0.475 0.0579 0.0055 0.0850
0.50 0.0354 0.0085 0.0115
0.525 0.0140 0.00082 0.0276
0.550 0.0413 0.0451 0.0607
0.575 0.1650 0.2843 0.7132
0.60 0.1025 0.4228 0.68

the numerical solution of the one-dimensional Boussinesq-type set of equations. This position
was determined with a properly introduced parameter ϑ with ϑ ∈ [0, 1]. The method, which could
be considered as a generalization of the known from the bibliography Crank-Nickolson method
(ϑ = 0.5), was applied successfully to the one-dimensional Boussinesq-type set of equations as
those were introduced by Peregrine [2] and the experiments proved that this investigation is not
non-realistic, but a fact, which gives applicable results. The numerical results compared to the
corresponding ones given by the MIKE 21 BW [15] developed by DHI Software, are encouraging
and specific points for improvement and optimization of the method come out from the comparisons.
Consideration of different bathymetries, initial and boundary conditions could further reveal the
usefulness of the proposed method.

The authors have already applied this method using different bathymetries, a work which is
under preparation and it is going to be submitted for publishing soon.

ACKNOWLEDGEMENTS

This research was co-funded 75% by E.E. and 25% by the Greek Government under the framework of the
Education and Initial Vocational Training Program—Archimedes, Technological Educational Institution
(T.E.I.) Athens project ‘Computational Methods for Applied Technological Problems’.

The authors would like to thank Dr K. Belibassakis, Shipbuilding Department, T.E.I. Athens for the
fruitful discussions during the revision of this paper.

REFERENCES

1. Berkhoff JCW. Computation of combined refraction–diffraction. In Proceedings of 13th Coastal Engineering
Conference, vol. 1. ASCE: Vancouver, 1972; 471–490.

2. Peregrine DM. Long waves on a beach. Journal of Fluid Mechanics 1967; 27(4):815–827.
3. Abbott MB, Petersen HM, Skovgaard O. On the numerical modeling of short waves in shallow water. Journal

of Hydraulic Research 1978; 16(3):173–203.
4. Abbott MB, McCowan AD, Warren IR. Accuracy of short wave numerical models. Journal of Hydraulic

Engineering 1984; 110(10):1287–1301.
5. Madsen PA, Murray R, Sørensen OR. A new form of the Boussinesq equations with improved linear dispersion

characteristics (Part 1). Coastal Engineering 1991; 15(4):371–388.
6. Madsen PA, Sørensen OR. A new form of the Boussinesq equations with improved linear dispersion characteristics.

Part 2: a slowly-varying bathymetry. Coastal Engineering 1992; 18(1):183–204.
7. Beji S, Battjes JA. Numerical simulation of nonlinear wave propagation over a bar. Coastal Engineering 1994;

23:1–16.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:129–147
DOI: 10.1002/fld



A PARAMETRIC FDM FOR SHALLOW SEA WAVES 147

8. Wei G, Kirby T. Time-dependent numerical code for extended Boussinesq equations. Journal of Waterway Port
Coastal and Ocean Engineering (ASCE) 1995; 121(5):251–261.

9. Beji S, Nadaoka K. Formal derivation and numerical modelling of the improved Boussinesq equations for varying
depth. Ocean Engineering 1996; 23:691–704.
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